
Self-averaging in random self-interacting polygons

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 L37

(http://iopscience.iop.org/0305-4470/34/6/102)

Download details:

IP Address: 171.66.16.101

The article was downloaded on 02/06/2010 at 09:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) L37–L44 www.iop.org/Journals/ja PII: S0305-4470(01)18833-5

LETTER TO THE EDITOR

Self-averaging in random self-interacting polygons

E J Janse van Rensburg1, E Orlandini2, M C Tesi3 and S G Whittington4

1 Department of Mathematics, York University, Toronto, Canada M3J 1P3
2 INFM, Dipartimento di Fisica, Università di Padova, Padova, Italy
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Abstract
We prove that a lattice polygon model of a self-interacting random ring
copolymer is thermodynamically self-averaging. The proof is quite general
and applies to any two-body potential linear in the numbers of contacts of
different types.

PACS numbers: 0550, 3620, 8270

Quenched random systems have been studied since the early work of Brout (1959) and there has
been a resurgence of interest in recent years. In particular there have been several treatments of
self-interacting random copolymers (Sfatos and Shakhnovich 1997, Garel et al 1998, Monari
et al 1999, Orlandini et al 2000). These polymers could, for instance, have been produced
by a polymerization process giving rise to a random sequence of (say) two comonomers A
and B. The sequence is random but is then fixed in each individual molecule, so that different
molecules have different (fixed) comonomer sequences. Typically one is interested in the
situation in which the interaction between a pair of monomers depends on which monomers
are involved, so that there are different A–A, B–B and A–B interaction potentials. Under some
circumstances such systems can show collapse transitions (see e.g. Monari et al 1999).

Although copolymers with different sequences of monomers can show different properties
one expects that, in the limit of very long copolymers, the distribution of some properties will
be very tightly peaked about their mean values. This is the phenomenon of self-averaging. It
implies that ‘most’ (in a sense which can be made precise) sequences of comonomers will give
rise to the same properties for the copolymer. If the limiting free energy is independent
of the monomer sequence for almost all monomer sequences we say that the system is
thermodynamically self-averaging.

Thermodynamic self-averaging has been proved rigorously for some spin models (van
Hemmen and Palmer 1982, van Enter and van Hemmen 1983), though it is known that
correlation functions are not self-averaging in some random spin problems (Derrida and
Hilhorst 1981, Sourlas 1987). Thermodynamic self-averaging has also been proved for a self-
avoiding walk model of the adsorption of linear copolymers (Orlandini et al 1999) and for a
lattice tree model of the adsorption of branched copolymers (You and Janse van Rensburg 2000).
For self-interacting random copolymers, thermodynamic self-averaging has been proved for
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an unfolded self-avoiding walk model (Orlandini et al 2000) but there is no proof available for
either a self-avoiding walk model or for a polygon model. In this paper we supply a proof of
thermodynamic self-averaging for the polygon case.

The way in which the existence of the thermodynamic limit was proved for the
homopolymer version of this problem (i.e. where there is no sequence randomness) was to
derive a super-additive inequality for the logarithm of the partition function by a concatenation
argument. One might hope to derive a similar relation in the case where the colouring of
the vertices is random, to give a super-additive stochastic process, and then use a variant
of Kingman’s ergodic theorem (Kingman 1968, 1973, Akcoglu and Krengel 1981, Krengel
1985). Indeed this is how self-averaging was proved for the case of unfolded walks (Orlandini
et al 2000). For the polygon problem things are less simple. As we shall see, it is possible
to devise a concatenation construction but the colourings of the polygons are ‘inter-leaved’
in the construction, so that the results of Kingman and of Akcoglu and Krengel cannot be
used directly. In fact the proof that we shall give is self-contained and does not make direct
use of results from ergodic theory. The general idea is to concatenate a set of polygons to
form a larger polygon and derive an inequality to which one can then apply the strong law
of large numbers. The natural way to carry out the concatenation of a set of polygons with
given colourings does not always lead to a polygon with the same colouring, because of the
inter-leaving of the colours which occurs in the concatenation process. The main difficulty in
the proof is to find a scheme to avoid this problem. The situation is somewhat different from
the problem of self-averaging in adsorbing lattice trees (Janse van Rensburg 2000, You and
Janse van Rensburg 2000), though there are some analogous aspects. The key to the specific
solution to the polygon problem is contained in lemma 3, and the later arguments are more
general and apply to a wide range of problems.

We consider abstract polygons with n vertices, with vertices independently coloured +1
with probability p and −1 with probability 1 − p. Since the polygon is not rooted, associated
with each colouring χ (i.e. with each sequence of +1 and −1) there is a set {χj } of cyclic
permutations of this colouring, and all members of the set of cyclic permutations must be
regarded as one single colouring of the polygon. The polygons are embedded in the d-
dimensional hypercubic lattice Zd , so that each vertex of the polygon has integer coordinates.
The vertices are coloured i = 1, 2, . . . , n and vertex i has coordinates (xi, yi, . . . , zi). Vertices
i and i + 1 (i = 1, . . . , n − 1) are unit distance apart and are incident on a common edge.
Similarly vertices 1 and n are unit distance apart and are incident on a common edge. The
bottom (top) vertex of the (embedded) polygon is the vertex with lexicographically first (last)
coordinates. A contact is a pair of vertices of the polygon which are unit distance apart which
are not incident on a common edge of the polygon. Given a colouring χ and a particular cyclic
permutation χj of χ , let pn(k, χj ) be the number of n-edge polygons, modulo translation,
coloured cyclically according to the colouring χj , starting at the bottom vertex, with k++

contacts between pairs of vertices coloured +1 and +1, k−− contacts between pairs of vertices
coloured −1 and −1, and k+− contacts between pairs of vertices coloured +1 and −1. We write
k for the vector (k++, k−−, k+−), and we call k the contact vector. Define the corresponding
partition function

Zn(β, χj ) =
∑
k

pn(k, χj )e
βg(k) (1)

where g(k) is a linear function of the elements of the vector k, bounded above by a constant
(γ ) multiplied by the number of contacts, and β < ∞. Since each of the n cyclic permutations
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of the polygon must be considered we define

Zon(β, χ) =
n∑
j=1

Zn(β, χj ) (2)

and our aim is show that the free energy

κo(β, χ) = lim
n→∞ n

−1 logZon(β, χ) (3)

exists and is equal, almost surely, to the quenched average free energy

κ̄(β) = lim
n→∞〈n−1 logZon(β, χ)〉 (4)

where the angular brackets 〈· · ·〉 denote averaging with respect to the colouring χ .
The leftmost plane (rightmost plane) of a particular polygon is the plane x = minj {xj }

(x = maxj {xj }). Consider the set of edges of a polygon which are in the leftmost (rightmost)
plane of the polygon, and define the bottom edge (top edge) as the edge in this set which has
lexicographically the least (largest) mid-point. We consider a simpler class of polygons, which
we call ∗-polygons. A polygon is a ∗-polygon if the polygon has a single edge in each of its
left- and rightmost planes.

For each polygon there are two paths joining the bottom and top vertices. For fixed α,
0 < α < 1 we write p∗

n(�αn
, k, χj ) for the number of ∗-polygons with n edges, �αn
 edges
in one of the two paths joining the bottom and top vertices, colouring χj and contact vector k.
We define the two partition functions

P ∗
n (�αn
, β, χj ) =

∑
k

p∗
n(�αn
, k, χj )eβg(k) (5)

and

P ∗
n (β, χj ) =

∫
dα P ∗

n (�αn
, β, χj ). (6)

We next prove a series of lemmas about ∗-polygons.

Lemma 1. The quenched average free energy

κ∗(α, β) = lim
n→∞〈n−1 logP ∗

n (�αn
, β, χj )〉 (7)

exists for all β < ∞.

Proof. For any β < ∞, n−1 logP ∗
n (�αn
, β, χj ) is bounded above since the total number of

polygons increases exponentially and g(k) � γ (d − 1)n. Let Q1 be a polygon counted by
p∗
n(�αn
, k − k1, χ1) and Q2 be a polygon counted by p∗

m(�αm
, k1, χ2). Translate Q2 such
that the midpoint of its bottom edge has first coordinate one larger than the first coordinate
of the midpoint of the top edge of Q1. Rotate Q2 about the first direction until its bottom
edge is parallel to the top edge of Q1. Notice that there are no nearest-neighbour contacts
between vertices in Q1 and Q2, except for endpoints of the top and bottom edges. If these
top and bottom edges are deleted and two edges are added to join Q1 and Q2 to form a single
polygon, then two new contacts are created. The rotation of Q2 can be carried out such that
the resulting polygon has two disjoint paths between the bottom and top vertices, of lengths
�αn
 + �αm
 and (n +m)− (�αn
 + �αm
). Let l be the contact vector of the new polygon,
and define k0 = l − k. The colouring of the new polygon is that sequence of colours, χ3,
obtained via the concatenation construction. The colouring χ1 of Q1 can be regarded as a set
of two colourings, one (χα1 , say) of length �αn
 and a second (χ1−α

1 , say) of length n− �αn
.
Similarly the colouring χ2 of Q2 can be regarded as a set of two colourings, one (χα2 , say)
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of length �αm
 and a second (χ1−α
2 , say) of length m − �αm
. Then the colouring χ3 is the

concatenation χα1 + χα2 + χ1−α
2 + χ1−α

1 . Observe that the same χ3 is obtained for any Q1 and
Q2, given χ1 and χ2. Similarly, k0 is also fixed, depending only on α, and χ1 and χ2. This
gives the supermultiplicative inequality∑
k1

p∗
n(�αn
, k − k1, χ1)p

∗
m(�αm
, k1, χ2) � 2(d − 1)p∗

n+m(�αn
 + �αm
, k + k0, χ3) (8)

since at most 2(d − 1) copies of Q2 could be rotated to become identical. Since two contacts
are created, the elements of the contact vector k0 are each at most 2 and at least 0.

Multiply both sides by eβg(k) = eβg(k−k1)eβg(k1) (since g is a linear function) and sum over
k. If we define h(β) = maxk0{βg(k0)} (now independent ofQ1 andQ2), then the sums over k
and k1 can be performed to give

P ∗
n (�αn
, β, χ1)P

∗
m(�αm
, β, χ2) � 2(d − 1)eh(β)P ∗

m+n(�αn
 + �αm
, β, χ3). (9)

Take logarithms and then average over χ1 and χ2 to obtain

〈logP ∗
n (�αn
, β, χ)〉χ + 〈logP ∗

m(�αm
, β, χ)〉χ � h(β) + log(2(d − 1))

+〈logP ∗
m+n(�αn
 + �αm
, β, χ)〉χ . (10)

Equation (10) is a generalized super-additive inequality and the existence of the limit is a
consequence of theorem 3.4 in Janse van Rensburg (2000). �

Note that, by symmetry,

p∗
n(�αn
, k, χj ) = p∗

n(�(1 − α)n
, k, χ̄j ) (11)

where χ̄j is χj read in reverse order. Thus, it follows that

κ∗(α, β) = κ∗(1 − α, β). (12)

Lemma 2. The free energy κ∗(α, β) is a concave function of α and

κ∗(α, β) � κ∗(1/2, β) (13)

for every fixed β < ∞.

Proof. By concatenating two polygons, each with n edges, as in the proof of lemma 1, one
can obtain the inequality

P ∗
n (�α1n
, β, χ1)P

∗
n (�α2n
, β, χ2) � 2(d − 1)eh(β)P ∗

2n(�α1n
 + �α2n
, β, χ3). (14)

Replacing α1 by α, and α2 by 1 − α, taking logarithms, dividing by n, averaging over χ1 and
χ2 and taking n → ∞ gives

κ∗(α, β) + κ∗(1 − α, β) � 2 κ∗(1/2, β). (15)

The concavity of κ∗ in α now follows since κ∗(α, β) is a monotonic, bounded function of α at
fixed β < ∞. Using the concavity of κ∗(α, β) together with equation (11) gives (13). �

We next show self-averaging for the free energy of ∗-polygons for any fixed α and β. The
proof is similar in spirit to lemma 6.41 and theorem 6.42 in Janse van Rensburg (2000), and
consists of several parts.

Lemma 3. For fixed β < ∞, and for any α and almost all fixed colourings χ0 we have

κ∗(α, β) � lim inf
n→∞ n−1 logP ∗

n (�αn
, β, χ0). (16)
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Proof. Let n = pm + q for fixed m, where 0 � q < m. Concatenate p polygons each of size
m, and one polygon of size q to form a polygon of size n. Choose the colouring of the ith
polygon to be χi , and that of the final polygon to be χp+1, such that the concatenated polygon
of length n has colouring χ0. If all these polygons have fixed α, then the resulting colouring
χ0 is independent of the particular embeddings of the polygons. This results in the inequality

P ∗
pm+q(p�αm
 + �αq
, β, χ0) �

[ p∏
i=1

(2(d − 1) eh(β)P ∗
m(�αm
, β, χi))

]
P ∗
q (�αq
, β, χp+1).

(17)

Take logarithms and dividing by mp + q gives

1

pm + q
logP ∗

pm+q(p�αm
 + �αq
, β, χ0) � pm

pm + q

[
1

p

p∑
i=1

(
1

m
logP ∗

m(�αm
, β, χi)
)]

+
p[h(β) + log(2(d − 1))]

mp + q
+

1

mp + q
logP ∗

q (�αq
, β, χp+1). (18)

If p → ∞ with fixed m, then by the strong law of large numbers if follows that

lim inf
n→∞ n−1 logP ∗

n (�αn
, β, χ0) � 〈m−1 logP ∗
m(�αm
, β, χ)〉χ +

h(β) + log(2(d − 1))

m
(19)

for almost all colourings χ0. If m → ∞, then the lemma follows from lemma 1. �

Lemma 4. For almost all colourings χ0

κ∗(α, β) = lim inf
n→∞ n−1 logP ∗

n (�αn
, β, χ0). (20)

Proof. Since the space � of all sequences of colours is a probability space with uniform
measure, it follows that

κ∗(α, β) = lim
n→∞

∫
�

dχ [n−1 logP ∗
n (�αn
, β, χ)] (21)

and from Fatou’s lemma (see for instance Friedman 1982) we obtain

κ∗(α, β) �
∫
�

dχ lim inf
n→∞ n−1 logP ∗

n (�αn
, β, χ). (22)

Define the decomposition � = �− ∪�0 ∪�+ by

lim inf
n→∞ n−1 logP ∗

n (�αn
, β, χ) = κ∗(α, β) ∀χ ∈ �0

lim inf
n→∞ n−1 logP ∗

n (�αn
, β, χ) < κ∗(α, β) ∀χ ∈ �−

lim inf
n→∞ n−1 logP ∗

n (�αn
, β, χ) > κ∗(α, β) ∀χ ∈ �+.

(23)

By lemma 3 the measure of �− is zero. Suppose that the measure of �+, µ(�+), is positive.
Then µ(�0) = 1 − µ(�+). Therefore∫
�

dχ [lim inf
n→∞ n−1 logP ∗

n (�αn
, β, χ)] > µ(�+)κ
∗(α, β) + (1 − µ(�+))κ

∗(α, β)=κ∗(α, β).

(24)

This contradicts equation (22), and we conclude that µ(�+) = 0. This proves the lemma. �
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Theorem 1. For almost all colourings χ0

κ∗(α, β) = lim
n→∞ n

−1 logP ∗
n (�αn
, β, χ0). (25)

Proof. Suppose that

lim sup
n→∞

n−1 logP ∗
n (�αn
, β, χ) > κ∗(α, β) (26)

for all χ ∈ U where the measure of U , µ(U), is positive. By definition of the lim sup, there is
an εχ > 0 and an infinite set of integers {ni} such that n−1

i logP ∗
ni
(�αni
, β, χ) is convergent

when i → ∞ and such that for each such ni ,

n−1
i logP ∗

ni
(�αni
, β, χ) > κ∗(α, β) + εχ (27)

for each χ ∈ U . Define the function Tn = 1
ni+1

logP ∗
ni+1
(�αni+1
, β, χ) for ni < n � ni+1.

Then for all n � n1,

Tn > κ∗(α, β) + εχ . (28)

Tn is measurable on �, so by the Lebesgue dominated convergence theorem it follows that∫
�

dχ lim
n→∞ Tn = lim

n→∞

∫
�

dχ Tn = lim
i→∞

∫
�

dχ
1

ni
logP ∗

ni
(�αni
, β, χ). (29)

Thus, from equation (21) it follows that

κ∗(α, β) = lim
n→∞

∫
�

dχ n−1 logP ∗
n (�αn
, β, χ) � κ∗(α, β) +

∫
U

dχ εχ > κ∗(α, β). (30)

This gives a contradiction, unless µ(U) = 0, which proves the theorem. �

This theorem proves self-averaging for every fixed value of α, and in particular for
α = 1/2. We now show that the model of ∗-polygons is self-averaging by relating P ∗

n (β, χj )

and P ∗
n (n/2, β, χj ).

Theorem 2. For all β < ∞ and almost all χ0

lim
n→∞ n

−1 logP ∗
n (β, χ0) = lim

n→∞〈n−1 logP ∗
n (β, χ)〉χ . (31)

Proof. By inclusion,

1

n
logP ∗

n (n/2, β, χ) � 1

n
logP ∗

n (β, χ). (32)

To obtain a bound in the other direction we observe that

P ∗
n (β, χ) =

∫ 1

0
dα P ∗

n (�αn
, β, χ)

= P ∗
n (n/2, β, χ)

∫ 1

0
dα eκ

∗(α,β)n−κ∗(1/2,β)n+o(n)

� P ∗
n (n/2, β, χ)e

o(n) (33)

since κ∗(α, β) � κ∗(1/2, β). The squeeze theorem for limits then gives the desired result. �

We next relate P ∗
n (β, χ) to Zn(β, χ). Each polygon can be converted to a ∗-polygon with

four additional edges and four additional vertices. These additional vertices can be coloured
in 24 different ways. Given a colouring χ0 of the original polygon, there are 24 possible
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colourings of the resulting ∗-polygon which we call χ∗
j , j = 1, 2, . . . , 24. Then we have the

inequality

Zn(β, χ0) �
24∑
j=1

P ∗
n+4(β, χ

∗
j ) � 24P ∗

n+4(β, χ
∗
j0
) (34)

whereβ is fixed, and where j0 is that value of j which maximizes the summand above. Observe
that j0 depends on g(k) and on χ0. Any polygon counted by P ∗

n+4(β, χ
∗
j0
) can be converted

into a polygon counted by Zn(β, χ0) by removing the four vertices in the left- and rightmost
planes, and adding the two obvious edges to form a polygon. This deletes two contacts, and
the energy change can be bounded above by a constant. Therefore,

P ∗
n+4(β, χ

∗
j0
) � A(β)Zn(β, χ0). (35)

Taking logarithms, dividing by n, and letting n → ∞ in equations (34) and (35) gives

lim
n→∞ n

−1 logZn(β, χ0) = κ∗(1/2, β) = κ∗(β) (36)

for almost all χ0. The result is the following theorem.

Theorem 3. The lattice polygon model of self-interacting random ring copolymers is
thermodynamically self-averaging. That is

lim
n→∞ n

−1 logZn(β, χ0) = lim
n→∞〈n−1 logZn(β, χ)〉χ (37)

for almost all χ0.

Finally we turn to the relation between Zn(β, χj ) and Zon(β, χ) where χj is one of the n
cyclic permutations of the colouring χ . From equation (2)

Zon(β, χ) � nmax
j
Zn(β, χj ) ≡ nZn(β, χjo ) (38)

and

Zon(β, χ) � Zn(β, χjo ). (39)

Therefore

κo(β, χ) ≡ lim
n→∞ n

−1 logZon(β, χ) = κ∗(β) (40)

for almost all colourings χ , and is equal to the quenched average free energy κ̄(β).
We wish to emphasize that the model for which we have proved thermodynamic self-

averaging is an important physical model of self-interacting random copolymers. However,
the problem of self-averaging in the corresponding self-avoiding walk model is still open.

Some of this work was carried out while three of the authors were visiting the Mathematisches
Forschunginstitut Oberwolfach. This research was financially supported, in part, by NSERC
of Canada.
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